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a b s t r a c t 

Studies of working memory (WM) function have tended to adopt either a within-subject approach, focusing on 
effects of load manipulations, or a between-subjects approach, focusing on individual differences. This dichotomy 
extends to WM neuroimaging studies, with different neural correlates being identified for within- and between- 
subjects variation in WM. Here, we examined this issue in a systematic fashion, leveraging the large-sample 
Human Connectome Project dataset, to conduct a well-powered, whole-brain analysis of the N-back WM task. 
We first demonstrate the advantages of parcellation schemes for dimension reduction, in terms of load-related 
effect sizes. This parcel-based approach is then utilized to directly compare the relationship between load-related 
(within-subject) and behavioral individual differences (between-subject) effects through both correlational and 
predictive analyses. The results suggest a strong linkage of within-subject and between-subject variation, with 
larger load-effects linked to stronger brain-behavior correlations. In frontoparietal cortex no hemispheric biases 
were found towards one type of variation, but the Dorsal Attention Network did exhibit greater sensitivity to 
between over within-subjects variation, whereas in the Somatomotor network, the reverse pattern was observed. 
Cross-validated predictive modeling capitalizing on this tight relationship between the two effects indicated 
greater predictive power for load-activated than load-deactivated parcels, while also demonstrating that load- 
related effect size can serve as an effective guide to feature (i.e., parcel) selection, in maximizing predictive 
power while maintaining interpretability. Together, the findings demonstrate an important consistency across 
within- and between-subjects approaches to identifying the neural substrates of WM, which can be effectively 
harnessed to develop more powerful predictive models. 
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. Introduction 

A major line of cognitive neuroscience research has been directed
owards understanding the neural basis of working memory (WM). This
ork has tended to adopt one of two methodological approaches, fo-

using on either within-subject effects or between-subjects differences
i.e., individual differences; Braver et al., 2010 ). In the within-subject
M studies, a central goal has been to identify the neural correlates

nderlying WM load-related effects, finding brain regions sensitive to
M maintenance demands ( Feredoes and Postle, 2007 ; Jha and Mc-

arthy, 2000 ; Motes and Rypma, 2010 ; Pessoa et al., 2002 ; Rypma et al.,
999 ; Veltman et al., 2003 ) and/or the effects of parametric variation
n WM load ( Braver et al., 1997 ; Lamichhane et al., 2020 ; Van Snel-
enberg et al., 2015 ). In contrast, between-subjects WM studies have
ocused on understanding the neural basis of individual differences in

M function, which have long-been established as a major component
f this domain ( Baddeley, 2012 ; Engle et al., 1999 ; Just and Carpen-
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er, 1992 ; Saults and Cowan, 1998 ). In neuroimaging studies of this
ype, the goal has been to identify key brain regions, for which activity
evels correlate with individual variation in WM behavioral performance
 Mitchell and Cusack, 2008 ; Xu and Chun, 2006 ). Despite the significant
dvances that have come from each methodological approach, a key un-
esolved question is the extent to which within- and between-subjects
ariations in WM reflect the same or dissociable underlying neural sys-
ems ( Yarkoni and Braver, 2010 ). The primary goal of the current study
as to resolve the degree to which the neural correlates of within- and
etween-subjects WM variations overlap. 

There are good reasons to think that the neural substrates of within-
nd between-subjects WM variation to be anatomically and statisti-
ally dissociable. By design, brain regions revealed by within-subject
nalyses (e.g., neural load effects) show the most consistent activa-
ion patterns within a selected sample; conversely, regions identified
y between-subject analyses will have a large component of variability
hat correlates with WM performance. Importantly, however, the most
onsistently activated regions do not necessarily have large variability
tober 2021 
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n activation ( Yarkoni and Braver, 2010 ). This is unsurprising since,
tatistically, between-subjects variability constitutes the error term in
ithin-subject analyses, creating a potential tradeoff between within-
nd between-subjects effect sizes, all else being equal. Indeed, although
he neuroimaging literature has converged on key brain networks, such
s the frontoparietal network, as being critical for WM function, it has
lso revealed spatial dissociations between regions sensitive to within-
nd between-subjects WM variation. Early neuroimaging studies high-
ighted the importance of the prefrontal regions for WM load effects
 Cairo et al., 2004 ; Postle et al., 2001 ; Rottschy et al., 2012 ), but other
egions, such as the anterior cingulate cortex and parietal regions, were
dentified based on between-subject variation ( Bunge, 2001 ; Todd and
arois, 2005 ; Xu and Chun, 2006 ). A more recent study that utilized

ata-driven approaches in a large sample dataset also highlighted a sim-
lar dissociation ( Egli et al., 2018 ). In particular, the authors identified a
arietally-centered network that was sensitive to load-related individual
ifferences, whereas a frontally-centered network was found to be sensi-
ive to load-independent attention level. Yet the literature is still lacking
 systematic, whole-brain focused investigation of this issue. The goal
f the current study is to fill this gap. 

A recent shift in emphasis within the cognitive neuroscience litera-
ure has been an appreciation of the importance of establishing predic-
ive power when examining brain-behavior relationships. In particular,
redictive power can only truly be established when examining out-
f-sample data, such as through the use of cross-validation approaches
 Yarkoni and Westfall, 2017 ). Previous studies that have examined the
redictive power of WM-related brain activity have tended to use whole
rain activity patterns in a non-selective manner when constructing
odels to predict behavioral performance ( Pornpattananangkul et al.,
020 ; Satterthwaite et al., 2013 ; Sripada et al., 2020 ). However, It has
lso been recognized that there is a trade-off between predictive and
xplanatory power, which can often be optimized by favoring models
ith fewer selective explanatory variables, as these may have a greater
otential for interpretation and generalization ( Kampa et al., 2014 ).
ndeed, it is not yet known whether some brain regions may exhibit
reater predictive power than others, and whether specific functional
roperties (e.g., neural load effects) might drive these predictive differ-
nces. For example, it is well established that brain regions show dif-
erent functional properties in response to increasing WM loads, with
ome regions increasing activity, while others – predominantly in the
efault mode network – show a deactivation pattern ( Buckner et al.,
008 ; Owen et al., 2005 ). Both load-activated and load-deactivated re-
ions have been found to predict WM performance ( Satterthwaite et al.,
013 ). Nevertheless, there has yet to be a systematic examination test-
ng whether the magnitude and the direction of load-related effects can
erve as an informative guide regarding the predictive power of brain
egions. Thus, a secondary goal of the current study was to precisely
uantify and compare brain regions in terms of their relative predic-
ive power, using within-subjects WM variation (neural load effects) as
n index by which to rank-order brain regions. Moreover, we take ad-
antage of a machine learning approach combined with permutation
esting to quantify how predictive power of brain regions changes as
 function of load-related effect size and sign (i.e., load-activated vs.
oad-deactivated). 

A final goal of the present study was to demonstrate the utility of
 parcel-based approach to whole-brain WM analysis, in contrast to the
raditional voxel/vertex-based ( + clustering) approaches that have been
eployed in the prior literature. In particular, we argue that the parcel-
ation approach is advantageous, because it achieves the goal of dimen-
ionality reduction in a principled manner (by relying on available pre-
pecified parcellation atlases, so is unbiased), while potentially increas-
ng WM-related effect sizes. This potential gain in effect size is critical
ue to two reasons. First, a major goal of WM research is to identify neu-
al correlates in terms of the degree of within-subject or/and between-
ubject variation they can capture ( Yarkoni and Braver, 2010 ). Second,
owever, prior work has suggested that voxel/vertex-based analyses
2 
ield small effect sizes more generally, such that these approaches may
e unreliable and/or have insufficient sensitivity when relying on the
tandard sample sizes employed in task fMRI research ( Poldrack et al.,
017 ; Rottschy et al., 2012 ). 

To achieve these study goals, we utilized the Human Connectome
roject (HCP) 1200-release open dataset ( Van Essen et al., 2013 ), along
ith two distinct parcellation schemes, to systematically examine the re-

ationship among within- and between-subjects variation in the N-back
M task. The Gordon et al. (2016) parcellation has recently been suc-

essfully utilized with this task and dataset to conduct analyses of indi-
idual differences in WM function ( Etzel et al., 2020 ). The other parcel-
ation that we employed, and used for primary results reporting, is the
ore recent Schaefer et al. (2018) scheme. The Schaefer parcellation
as the advantage of more homogenous parcel sizes and availability in
 variety of spatial resolutions (100–1000 parcels). For each scheme, we
onducted four sets of analyses: (1) estimating the within-subject effect
ize of each parcel within each functional network and comparing these
arcels to voxel/vertex-level analyses conducted in the same regions
c.f. Poldrack et al. 2017 ); (2) comparing within- and between-subject
ffect size, in terms of their relative magnitude and consistency; (3) ex-
mining how predictive power changes as a function of the sign and
agnitude of the load-related effect size; and (4) testing whether load-

elated effect size can be utilized as a key indicator variable to guide
eature selection, when building predictive models of WM performance.

. Methods 

.1. Data collection and preprocessing 

Neuroimaging data acquired from fMRI scans performed
n 1083 healthy adults, in the age range of 22–35 years,
ere made available through the Human Connectome Project

HCP). The 1200 subject release dataset was used for this study
 http://www.humanconnectomeproject.org/ ). Participants were re-
ruited from the area surrounding Washington University in St. Louis
St. Louis, MO). All participants were given extensive telephone
creening interviews and signed the informed consent document at the
eginning of the study (see Van Essen et al. (2013) for more detailed
nformation regarding the informed consent process and screening
nterviews). 

All functional images were acquired on a 3T Siemens Skyra scanner
ith a 32-channel head coil (TR = 720 ms, TE = 33 ms, flip angle = 52°,
OV = 208 mm × 180 mm, matrix size = 104 × 90, 72 slices, 2 mm
sotropic voxels). More detailed information regarding pulse sequence
nd data acquisition is provided in previous publications describing the
CP dataset ( U ğurbil et al., 2013 ; Van Essen et al., 2013 ). The data were
ollected over a two-day period. The N-back task was used to assess WM
unction, based on data acquired in the first fMRI session. Out-of-scanner
ehavioral assessments of both WM function and general cognitive abil-
ty were acquired as part of the testing protocol, with measures from
he NIH-toolbox acquired on day one and additional non-Toolbox mea-
ures acquired on day two ( Barch et al., 2013 ; Van Essen et al., 2013 ).
reprocessing of fMRI data was implemented using the HCP minimally
reprocessed pipeline, which outputs data in CIFTI format on the asso-
iated grayordinates spatial coordinate system. Procedures for the HCP
ipeline have been comprehensively described in previous publications
 Glasser et al., 2013 ; Van Essen et al., 2013 ). 

.2. Dimension reduction using predefined parcellation schemes 

For the tasks included in the HCP dataset, 3D spatial maps of the
ontrast of parameter estimates (COPEs) were computed with FSL soft-
are ( Smith et al., 2004 ). These COPEs were released as part of the
CP publicly available distribution package, and reflect the magnitude
f brain activation differences between task conditions (i.e., within-
ubject effects). For the current study, we used COPE #11 in the HCP

http://www.humanconnectomeproject.org/
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-back task, which provides the contrast estimate between the high-load
ondition and the low-load condition (i.e., 2-back – 0-back), averaging
cross different stimulus types. Thus, a positive parameter estimate in-
icates higher activation in the high-load compared to low-load condi-
ion (which we hereafter refer to as load-activated), whereas a negative
arameter estimate indicates the reverse pattern (which we hereafter
efer to as load-deactivated). The COPE data were then summarized, by
veraging vertex-wise estimates into predefined parcels. We used two
ndependent, predefined parcellation schemes for dimension reduction
n order to assure that our findings are not the result of a particular par-
ellation scheme but are generalizable. We used the 400 cortical parcels
7 networks) atlas provided by Schaefer et al. (2018) and the 333 cor-
ical parcels (13 networks) atlas provided by Gordon et al. (2016) . Al-
hough the Schaefer parcellation has various levels of resolution (100–
000 parcels), the 400-parcel set was selected here because it was the
ne most thoroughly examined in the original paper ( Schaefer et al.,
018 ), and it is close in size, and thus comparable, to the Gordon par-
ellation. We report all results for the Schaefer 400 parcellation in the
ain text; Gordon parcellation results are included in the Supplemen-

ary Materials, as they were very similar in all respects. 

.3. Behavioral measures 

The N-back task was the primary in-scanner task used to assess WM
unction in the HCP. The N-back is probably the most popular neu-
oimaging paradigm for assessing WM function, via load (and content)
anipulations ( Barch et al., 2013 ; Braver et al., 1997 ; Lamichhane et al.,
020 ; Owen et al., 2005 ). The task included two runs of four blocks,
hich consisted of four distinct visual-spatial stimulus types, including
laces, tools, faces and body parts. In the analyses presented here, we
gnored the manipulation of stimulus type, and collapsed the data across
hese four conditions. Although examinations of WM content manipu-
ations are also an important focus of investigation, it was beyond the
cope of the current study; consequently, the decision to collapse across
timulus type was made to increase the statistical power and reliability
f the behavioral performance estimates (and COPEs). Specifically, the
n-scanner behavioral variable of interest was accuracy in the 2-back
ondition. For the 2-back condition, participants were asked to decide
hether the stimulus presented on the current trial was the same as the

timulus two trials back. The relationship between this in-scanner work-
ng memory performance measure and the COPE parameter estimate
as used to compute the individual difference (i.e., between-subjects)

ffect size, which was compared with the WM load (i.e., within-subject)
ffect size in an equivalent manner. 

As part of the HCP protocol, participants performed several cognitive
asks in an out-of-scanner behavioral session. Here we selected four out-
f-scanner behavioral measures to test the degree to which load-related
-back activity provides a more generalizable indicator of individual
ifferences in WM capacity and cognitive functioning, by predicting
ut-of-scanner indices. The rationale is that the out-of-scanner measures
hould be less impacted by any covarying state-related or non-specific
actors that might be reflected in N-back performance. Specifically, we
elected the List Sorting task which examines WM capacity; the Picture
ocabulary which examines Language/vocabulary comprehension; Oral
eading Recognition which examines language and reading decoding;
nd the Penn Matrix Reasoning task which examines general fluid in-
elligence ( Barch et al., 2013 ). These out-of-scanner tasks were selected
ecause they either directly probe WM capacity ( Tulsky et al., 2014 ) or
ave been found to be highly related to individual differences in WM
unction in prior work ( Cooper et al., 2019 ; Pornpattananangkul et al.,
020 ). In the current study, the primary focus was on the List Sorting
ask, as it is an explicit measure of WM capacity. Since the other out-
f-scanner measures do not directly tap into WM capacity per se , these
nalyses were primarily conducted for comparison, benchmarking, and
eneralization purposes, and are reported in Supplementary Materials. 
3 
.4. Outlier exclusion 

We identified outlier parcels based on extreme COPE values, using
 cutoff of above or below 3 times their interquartile range (known as
he 3 IQR rule; cf., Pornpattananangkul et al. 2020 ). Participants with
0% or more of their parcels showing extreme values were identified as
utliers and excluded from further analyses. This outlier detection ap-
roach was intended to remove participants with potentially poor brain
egistration. The 3 IQR rule was also applied to the behavioral measures
nd did not identify any outliers. This criterion excluded 52 outliers and
he final sample used in all subsequent analyses included in a total of
89 participants that completed both the in- and out-of-scanner tasks of
nterest. We also replicated all analyses without any outlier exclusion;
ll primary results remained unchanged. 

.5. Estimating vertex- and parcel- based measures of load-related effect 

ize 

To replicate the voxel-level N-back effect size measured reported in
oldrack et al. (2017) , we quantified the load-related effect size of each
ertex using Cohen’s d , which was computed as the mean effect divided
y the standard deviation of the data. To provide a network-level es-
imate of load-related effect size, we grouped all vertices into either 7
Schaefer) or 13 (Gordon) networks and computed the mean effect sizes
ithin each network. To quantify parcel-level N-back load-related ef-

ect size, we first averaged vertex-wise estimates into predefined parcels,
nd computed parcel-level Cohen’s d the same way as described above.
arcels were then grouped into either 7 (Schaefer) or 13 (Gordon) net-
orks and the mean parcel-level effect sizes were computed within each
etwork. These parcel-wise effect sizes were then compared with those
omputed vertex-wise. 

.6. Defining the neural correlates of within- and between-subject variation 

For each parcellation scheme, WM within-subject variation was mea-
ured in terms of the N-back load-related effect size. We defined neural
orrelates of the load-related effect by selecting parcels that had signif-
cant differences in activation between the high working memory load
2-back) and low load (0-back) conditions ( Rottschy et al., 2012 ). Specif-
cally, we conducted one-sample t -tests using the contrast COPE (2-back
0-back estimates) against a population mean of 0 to identify parcels

xhibiting positive (i.e., load-activated parcels) and negative (i.e., load-
eactivated parcels) differences, using a whole brain Bonferroni correc-
ion ( p < 0.000125) to determine statistical significance. Both sets of
arcels were load-sensitive and investigated in subsequent analyses in-
olving within-subject WM load effects. 

We defined neural correlates of between-subjects WM effects by se-
ecting parcels in which the between-subjects variability in load-related
ctivation was associated with variability in 2-back behavioral perfor-
ance. Specifically, we computed the Pearson correlation coefficient ( r )

etween each parcel’s load-related activation level and the 2-back task
erformance to identify parcels exhibiting either a positive or negative
inear relationship with behavioral performance, again using a whole-
rain Bonferroni correction ( p < 0.000125) to determine statistical sig-
ificance. Both sets of parcels were investigated in subsequent analyses
nvolving between-subject WM load effects. 

.7. Comparison of within-subject and between-subject WM effects 

In order to directly compare within- and between-subject WM ef-
ects, we computed a normalized ranking of both effect sizes across the
ull set of parcels. The Cohen’s d coefficient was used to quantify and
ank order parcels according to their sensitivity to WM load; the Pearson
orrelation coefficient ( r ) was used to quantify and rank order parcels
ccording to their sensitivity to individual differences in behavioral per-
ormance. Thus, each parcel was assigned two rank scores based on the
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bsolute value of their effect size for within- and between-subjects ef-
ects, respectively. Next the Spearman’s correlation ( 𝑟 𝑠 ) between the two
ank scores was computed separately for each of three parcel sets: load-
ctivated, load-deactivated, and load-insensitive (i.e. parcels that did
ot show a statistically significant load-related effect). A strong positive
orrelation coefficient indicates that the parcels contribute to within-
nd between-subjects WM variations in a consistent fashion. Conversely,
 weak correlation coefficient indicates that there not a strong linkage
etween the two types of WM effect. 

Further, to visualize the spatial distribution of parcels exhibiting a
ias towards within- or between-subjects effect, we computed the dif-
erence of the rank scores for each parcel (between - within effect size
anking). Based on this rank difference score, a positive value indicates
hat a parcel is biased to be more sensitive to within-subject variation,
hile a negative value indicates that the parcel is biased to be more sen-

itive to between-subjects variation. These rank difference scores were
hen normalized and visualized on the brain surface to identify any po-
ential spatial or anatomical gradients in these biases. 

.8. Building univariate predictive models of WM load-related effects 

We investigated the degree to which the WM load-related effect size
nd direction of effect (i.e., load-activated vs. load-deactivated) indi-
ated the predictive power of a parcel. Similar to the correlational ap-
roach, predictive models were used to index a parcel’s sensitivity to
etween-subjects variation but from a distinct inferential perspective.
n standard correlational analyses, the Pearson’s r value is an index that
ttempts to explain behavioral individual differences (i.e., explanatory
ower) observed in the N-back task, in terms of load-related activation.
et such approaches are not explicitly implemented to predict behavioral
erformance of a new individual (i.e., predictive power), based on their
eural activity pattern (or to predict the behavioral performance of that
ame individual in a different WM task; Yarkoni and Westfall, 2017 ).
n order to build truly predictive models, it is necessary to utilize cross-
alidation approaches in which predictions are evaluated on held out
out-of-sample) data. 

To provide a benchmark, univariate models were first used to es-
ablish the predictive accuracy of each parcel in isolation, estimated
hrough cross-validation. Specifically, for each parcel, a simple linear
egression model was trained on 9 folds of the data with the load-related
eural activity used to predict individual differences in behavioral per-
ormances, with predictive accuracy tested on the left-out fold. The pre-
ictive power was quantified as the Pearson correlation coefficient be-
ween the predicted and actual behavioral performance, averaged across
0 folds. Next, we ranked each parcel according to its load-related ef-
ect size, with separate grouping for load-activated and load-deactivated
arcels, to explore how univariate predictive accuracy varied as a func-
ion of load-related effect size. 

.9. Building multivariate predictive models of WM load-related effects 

A second phase of predictive modeling tested whether multivariate
redictive models would outperform univariate models. In particular,
rior findings have suggested that the pattern of neural activity across
arcels may contain additional information that can be leveraged to in-
rease predictive power ( Marek et al., 2020 ; Pornpattananangkul et al.,
020 ). To examine this issue systematically, we examined whether the
redictive power varied for parcels within different load-related effect
ize ranges. We took advantage of a machine learning multivariate ap-
roach to build predictive models, in which the load-related activation
f sets of parcels were used to predict both in- and out-of-scanner be-
avioral performance in a multivariate manner. 

To conduct these types of predictive analyses, we first grouped
arcels according to their load-related effect sizes into 12 bins that each
panned a range of 0.2 effect size: 4 bins of load-deactivated parcels
4 
ith load-related effect sizes ranging from − 0.1 to − 0.9; 7 bins of load-
ctivated parcels with load-effect sizes ranging from 0.1 to 1.5; and 1
in of load-insensitive parcels. We included additional load-activated
arcels ( N = 8) in the 1.3 to 1.5 bin and additional load-deactivated
arcels ( N = 9) in the − 0.7 to − 0.9 bin. For each of the 100 iterations of
ampling, we randomly and repeatedly sampled 10 parcels without re-
lacement from each bin, measuring the predictive power at each bin for
hat sampling; prediction power was then averaged across iteration for
ach bin. An important benefit of this type of sampling approach is that it
nables a comparison of averaged predictive accuracies across bins that
s not confounded by the number of predictive features (i.e., number of
arcels) in the respective bins. For example, there are 25 load-activated
arcels in the 0.1 to 0.3 bin but 58 load-deactivated parcels in the − 0.1
o − 0.3 bin. As a result, without controlling the number of parcels, it is
nclear whether any predictive accuracy differences observed between
he two bins were due to the properties of the parcels or the number of
redictive features. Conversely, with this analytic approach, we could
ystematically test whether changes in predictive power occurred reli-
bly both as a function of the direction (i.e., load-activated versus load-
eactivated) and magnitude of load-related effect size. 

For each round of sampling, we used support vector regression (SVR)
o test the predictive power of each parcel bin through a 10-fold cross-
alidation framework. For each bin, a linear SVR model (C = 1.0, ep-
ilon = 0.1) was trained on 9 folds of the data and tested on the left-out
old. The predictive accuracy was measured as the correlation between
he predicted and the actual performance scores ( Satterthwaite et al.,
013 ; Sripada et al., 2020 ). The final predictive accuracy for each bin
as averaged across 10 folds and across 100 rounds of sampling. More-
ver, we also tested the predictive power of each bin on out-of-scanner
asks (e.g., List Sorting) to test whether the inferences derived from
hese parcel groups generalized to working memory performance more
roadly, rather than just in-scanner N-back performance specifically. 

In order to statistically quantify how the predictive power of parcels
hanges as a function of load-related effect size, we developed a unique,
ested permutation test, adapted from the permutation paradigm used
n Etzel and Braver (2013) . As shown in Fig. S1 , for each round of sam-
ling, we pooled and shuffled the sampled parcels across the 12 bins
nParcels = 120), randomly assigning each bin a new set of 10 parcels.
he same SVR cross-validation framework was applied to measure the
ull predictive accuracy for each bin. This shuffling process was iterated
000 times, resulting in a total 1000 null predictive accuracy measures
er bin per sampling process. These null measures were then averaged
cross the 100 sampling processes. Using these null measures, we con-
tructed null distributions for: 1) the beta values for linear trend tests
hat focused on the effect of bin; and 2) the predictive power differences
etween any two parcel bins. Thus, we could estimate the probability
f observing the linear trend and predictive power differences measured
y the real, unshuffled data. 

.10. Using load-related effect size for feature selection 

In a last phase of analysis, we explored whether the load-related ef-
ect size could be treated as a useful indicator variable from which to
elect features in building predictive models. In particular, selecting fea-
ures according to load-related effect size (larger to smaller) could be a
seful heuristic that enables a more parsimonious predictive model, i.e.,
ne that provides an optimal mixture of interpretability and explanatory
ower, combined with maximal predictive accuracy. Specifically, begin-
ing with the parcel with the largest load-related effect size, we sequen-
ially added parcels as features to predict both in-scanner and out-of-
canner working memory performance, using the load-related effect size
s the metric by which to add each new feature (parcel). In other words,
e iteratively built a set of models, in which each was constructed by

uccessively adding features (parcels) according to rank-ordered effect
ize, then measuring the change in predictive power as the model accu-
ulated each new feature. The goal of this analysis was to determine
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Fig. 1. Parcel- and vertex-wise load effect sizes with Schaefer parcellation scheme. ( a) The Schaefer predefined parcellation scheme. The color map shows the 
respective functional network. ( b,c) The parcel-level and vertex-level load-related effect sizes, respectively. Vertices and parcels were grouped for each functional 
network. The number in the parenthesis indicates the number of parcels within each network. 
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f a load-related effect size cutoff could be identified, whereby adding
urther features (parcels) would no longer improve model performance.

To evaluate this feature selection principle, we compared the ob-
erved model performance to predictive models in which the features
ere randomly selected (i.e., without reference to load-related effect

izes). Specifically, for each predictive feature size, we randomly sam-
led without replacement the same number of predictive features and
stimated the model performance. This process was performed with
000 iterations, generating a null distribution for each predictive feature
ize. Note that due to computational constraints, we only conducted this
nalysis for predictive models up to 60 features. The 5% to 95% enve-
ope of each null distribution was computed and plotted to benchmark
he observed model performance. 

.11. Data and code availability 

Behavioral and processed fMRI data supporting the primary
ndings of this study are available at the 1200s HCP release
 http://www.humanconnectomeproject.org/ ). The code for performing
he specific analyses described in this paper can be found through the
pen Science Framework at https://osf.io/atkum/ . 

. Results 

.1. Parcels have larger effect sizes 

The load-related effect size was computed for each vertex
 N = 64,984 vertices) or parcel ( N = 400 parcels) within each Schaefer
etwork ( N = 7 networks; Fig. 1 a ). We quantified the standardized effect
ize using Cohen’s d . As predicted, parcels located within the frontopari-
tal control network (FPN; termed “Control ” in the Schaefer scheme)
howed the highest averaged effect sizes ( d = 0.93 ± 0.47; Fig. 1 b ),
5 
ith 66% (34/52) of the parcels reaching the level of d = 0.8, which is
tandardly defined as a large effect size; conversely, only 19% (10/52)
f the parcels had less than a medium effect size ( d < 0.5). On the other
and, the vertex-level effect sizes within the same network were much
ower on average ( d = 0.57 ± 0.35; Fig. 1 c ), which is consistent with
he effect size measures reported in Poldrack et al. (2017) . Specifically,
nly 28% (1934/6907) of the vertices in the Control network showed a
arge effect size ( d > 0.8), whereas about 43% (2959/6907) of the ver-
ices had less than a medium effect size ( d < 0.5). These results were
eplicated using Gordon parcellation scheme ( Fig. S2a ), with FPN and
he Dorsal Attention Network (DAN) showing mean parcel-level effect
izes of d = 0.92 ± 0.49 and d = 0.80 ± 0.47 ( Fig. S2b ), but much
maller mean vertex-level effect sizes of d = 0.59 ± 0.33 and d = 0.44
 0.37, respectively ( Fig. S2c) . This increase of effect size highlights

he advantages of utilizing predefined parcellation schemes and parcels
s the primary units of analysis, rather than the traditional voxel-wise
pproach. Importantly, the gain in sensitivity from using parcels did not
ome at a cost of specificity, as a clear differentiation and interpretable
rdering was observed across brain networks. In particular, although
arge effect sizes were observed in both the FPN/CONT and DAN, other
rain networks that are thought to be only weakly associated with WM,
uch as the Visual and Limbic networks, exhibited small effect sizes cen-
ered near zero (and this was the same as was found with vertex-based
ffect sizes). 

.2. Identification of WM-involved networks 

Utilizing the parcel-based approach, the goal of the next set of analy-
es was to identify the parcels that exhibited statistically reliable within-
r between-subjects WM effects. Specifically, parcels showing within-
ubject WM effect should exhibit consistent activation changes across
ll participants in response to increasing WM load; on the other hand,

http://www.humanconnectomeproject.org/
https://osf.io/atkum/
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Fig. 2. Neural correlates of within- and between-subject variations defined using Schaefer parcellation scheme. ( a) Parcels showing within-subject WM effect (i.e., 
load-sensitive). The color indicates the load-effect size, with red indicating load-activated parcels and blue load-deactivated parcels. ( b) Parcels showing between- 
subjects WM effect (i.e., neural-behavioral correlations). The color indicates the sign and size of the correlation, with red indicating positive and blue negative 
correlations. 
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arcels showing between-subjects WM effect should exhibit associations
etween their load-induced activity variations and behavioral perfor-
ances. To first identify parcels that showed significant within-subject
M effects, we performed parcel-wise ( N = 400 parcels) one-sample

 -tests with the preprocessed contrast estimates between 2-back and 0-
ack (2-back – 0-back) conditions for each subject ( N = 989). In to-
al, 353 parcels showed sensitivity to changes in working-memory load
emands (whole-brain Bonferroni corrected at p < 0.000125; Fig. 2 a,

ig. S3a ). In particular, among load-sensitive parcels, many exhib-
ted increased activity with increased load (i.e., load-activated parcels;
 = 157; Mean Cohen’s d = 0.74 ± 0.41; range: 0.12 to 1.75). How-
ver, a substantial subset of cortical parcels responded in the reverse
anner, with decreased activity associated with increased load (i.e.,

oad-deactivated parcels; N = 196; Mean Cohen’s d = − 0.49 ± 0.24;
ange: − 1.16 to − 0.12). We then used brain-behavior correlations to
dentify parcels that exhibited between-subjects WM effects. The anal-
sis revealed 177 parcels, for which load-related activity was asso-
iated with between-subject differences in 2-back task performance
whole brain Bonferroni correlated p < 0.000125; Fig. 2 b, Fig. S3b ).
n this case, most parcels exhibited a positive correlation between load-
elated activity and 2-back performance ( N = 120; Mean r = 0.24
 0.08; range: 0.12 to 0.44); a smaller number exhibited a nega-

ive correlation ( N = 57; Mean r = − 0.17 ± 0.04; range: − 0.28 to
 0.12). 

We compared these two types of effects by examining their over-
ap, via conjunction analysis. Indeed, a high degree of overlap was ob-
erved. Almost 99% of the parcels exhibiting between-subjects WM ef-
ects (i.e., brain-behavior correlations) also exhibited significant within-
ubject (i.e., load-related) effects (175/177 parcels). Furthermore, the
ign of the two effects was also highly consistent. That is, parcels that
xhibited positive correlations with behavioral performance also tended
o show load-related increase in activity (94% of the parcels that exhib-
ted positive behavioral correlations were also load-activated; 113/120
arcels) and vice versa (100% percent of the parcels that exhibited nega-
ive behavioral correlations were also load-deactivated; 57/57 parcels).
his systematic whole-brain analysis of the relationship between neural
orrelates of the two types of WM effects (within-subjects vs. between-
ubject) suggests that they are in fact strongly overlapping – rather than
iscrepant, as might have been assumed on purely statistical grounds –
n terms of their spatial distribution. 
6 
.3. Parcels contribute to between and within-subject variations 

quivalently 

To probe this relationship at a finer grain, a correlational approach
as used to examine the degree to which the two types of WM effects
ere coupled. For this analysis, we normalized the effect size of each
easure (load-related effect, brain-behavior correlation) by rank order-

ng each across parcels, and then conducting a Spearman’s correlation
 𝑟 𝑠 ) on the two ranks. Fig. 3 a illustrates these relationships, for load-
ctivated, load-deactivated, and load-insensitive parcels, respectively.
he results show that the two effects were very strongly correlated
hen considering load-activated parcels ( 𝑟 𝑠 = 0.79). However, the ef-

ect was significantly weaker for load-deactivated parcels ( 𝑟 𝑠 = 0.47;
 dif f = − 5.09, p < 0.001), suggest that for load-deactivated parcels the
oupling was weaker. Moreover, when examining the load-insensitive
arcels, there was no relationship between the two effects, as expected
 𝑟 𝑠 = 0.11, p = 0.46). These results suggest that WM-related neural activ-
ty reflects within- and between-subjects variation in a largely consistent
ashion, particularly for load-activated parcels. 

Nevertheless, it is possible that subtle anatomical dissociations or
radients might be present which favor one type of effect over the
ther, as has been alluded to in many previous studies ( Yarkoni and
raver, 2010 ). To examine this issue, we visualized differences in the
ankings of the two effect-sizes by plotting them on the brain surface, ac-
ording to the magnitude of difference or bias (i.e., favoring the within-
ubject or between-subject effect). Specifically, a positive ranking dif-
erence would suggest that the within-subject WM effect size of a given
arcel is ranked higher than its between-subject WM effect size, thus
howing a bias towards within-subject WM variation; conversely, a neg-
tive ranking difference would suggest a bias towards between-subject
M variation. Visual inspection of these patterns ( Fig. 3 b) seems to indi-

ate that parcels which show a bias towards one type of effect are evenly
istributed across the cortex, and without a strong pattern of spatial clus-
ering (e.g., prefrontal vs. parietal, left vs. right hemisphere, etc.). The
ame pattern of results was observed using Gordon parcellation scheme
 Fig. S4). To quantify these observations, we counted the number of
arcels in the frontal and parietal region per hemisphere that showed
ias towards either type of effect. Then Chi-square tests were used to test
or the presences of bias. Indeed, we did not observe any spatial distribu-
ion biases toward either type of effect across frontal and parietal lobes
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Fig. 3. ( a) The relationship between parcel’s within-subject effect size and explanatory power, as measured by load-related effect size and brain-behavior correlation 
using Schaefer parcellation scheme. The labels for x and y axis are the ranked order for within- and between- subject effect sizes, with smaller number indicating higher 
rank. The correlation between the rank orders for the two effect sizes were computed separately for load-activated, deactivated, and insensitive parcels ( ∗ indicates 
p < 0.001). (b) The spatial relationship between parcels being more senstive to within-subject effect and those being more sensitive to between-subjects effect. The 
color map represents the degree to which a parcel is more sensitive to a type of difference. Warm colors indicate a parcel being more sensitive to within-subject 
variation and cool more sensitive between-subject variation. 

Table 1 

The spatial relationship between Schaefer parcels being more senstive to within-subject effect and those being more sensitive to 
between-subjects effect. 

Lobe Within-subject Variation Biased Region Count Between-subject Variation Biased Region Count 

LH_Frontal 16 19 
RH_Frontal 17 19 
LH_Parietal 10 7 
RH_Parietal 9 9 

Table 2 

The network distribution of Schaefer parcels exhibiting greater sensiviity to within-subject variation (load-effect; left column) and 
between-subjects variation (individual differences; right column). Networks highlighted in bold exhibited reliable biases in their 
distribution, as identified through chi-square tests. 

Network Within-subject Variation Biased Region Count Between-subject Variation Biased Region Count 

Control 29 23 
Default 43 48 
Dorsal Attention 5 41 

Limbic 10 16 
Salience/Ventral Attention 21 26 
Somatomotor 62 15 

Visual 26 35 
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r left and right hemispheres (all p > 0.05; Table 1 ). Additionally, we
ested whether within- and between-subject effect biased parcels were
ifferentially distributed among functional networks. Interestingly, as
hown in Table 2 , we found that the parcels in the dorsal-attention
etwork were significantly biased toward between-subject variation
 𝑋 

2 
1, N = 46 = 28.17, p < 0.001) whereas parcels in the somatomo-

or network were significantly biased toward within-subject variation
 𝑋 

2 
1, N = 77 = 28.69, p < 0.001). The same pattern of results was repli-

ated using Gordon parcellation ( Table S1 ). These results suggest that
ndividual differences in working memory are more likely to be con-
ributed by networks associated with higher cognitive function rather
han perceptual/sensorimotor function. 

.4. Load-effect sizes indicates parcel’s univariate predictive power 

Although a tight relationship was observed between within-subject
nd between-subject WM effects, to quantify whether these effects can
ruly be considered predictive in nature, a cross-validation approach
7 
s required ( Yarkoni and Westfall, 2017 ). In particular, we examined
he impact of load-related effect size on the predictive accuracy of each
arcel separately, by focusing on out-of-sample test data. The predic-
ive accuracy was quantified as the correlation strength between pre-
icted and actual behavior performance, examined in the out-of-sample
ata. The results suggested that load-related effect size is highly corre-
ated with a parcel’s univariate predictive power (load-activated parcels:
 = 0.90, p < 0.001; load-deactivated parcels: r = 0.58, p < 0.001).
ig. 4 a shows the top and bottom 30 load-activated parcels ranked by
oad-related effect sizes, and the impact of the load-related effect size in
redicting between-subject variation in WM performance is very easily
een. Specifically, the load-activated parcels with the largest effect sizes
 ̄𝑑 = 1.37) tended to be the ones showing the strongest predictive power
mean 𝑟̄ = 0.32), whereas those with smaller effect sizes ( ̄𝑑 = 0.22)
ended to show weaker predictive power (mean 𝑟̄ = 0.10). A similar
attern was observed for load-deactivated parcels, yet with less promi-
ent effects ( Fig. 4 b ): parcels with the largest effect sizes ( ̄𝑑 = − 1.12)
xhibited the strongest predictive power (mean 𝑟̄ = 0.19), while parcels
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Fig. 4. The relationship between load-related effect size and predictive accu- 
racy for Schaefer parcels. ( a) Univariate predictive accuracy of the top and bot- 
tom 30 load-activated parcels ranked by load-related effect size (i.e., Cohen’s d). 
( b) Univariate predictive accuracy of the top and bottom 30 load-deactivated 
parcels ranked by the absolute values of the load-related effect size. Predictive 
power was examined with the left-out samples using cross-validation; predictive 
accuracy was quantified as the correlation between the predicted and observed 
scores. 
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Fig. 5. The predictive accuracy for each Schaefer parcel bin for a) In-Scanner 
(N-back) and b) Out-of-Scanner (List-Sorting) performance. Parcels were binned 
based on load-related effect sizes. Each point represents the predictive accu- 
racy averaged across 100 rounds of sampling from the respective bin. The as- 
terisk indicates a significant difference in predictive accuracy between load- 
activated and load-deactivated parcel bins being matched in load-related effect 
size ( p < 0.05 permutation test). The gray dashed line indicates the predictive 
accuracy for the load-insensitive bin. 
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ith smaller effect sizes ( ̄𝑑 = − 0.49) exhibited weaker predictive power
mean ̄𝑟 = 0.10). The Gordon parcellation scheme yield very similar pat-
erns ( Fig. S5). 

.5. Load-effect sizes indicates parcels’ multivariate predictive power 

The prior set of results suggests: (a) that the magnitude of WM load-
elated effects provide clear information regarding the power of parcels
o predict between-subjects WM performance effects; and (b) that this ef-
ect might be stronger for load-activated than load-deactivated parcels.
he next set of analyses examined this question more directly, while
lso switching to a multivariate approach. Specifically, multivariate ap-
roaches enable greater dimensionality reduction, while also testing
hether pooling data from multiple parcels achieves a concomitant
otential increase in predictive power. We first binned load-sensitive
arcels according to their load-related effect sizes, and then estimated
he relative predictive power of each parcel bin using an iterative ma-
hine learning framework and permutation-based statistical inference
 see Method: Building multivariate predictive models of WM load-related

ffects ). The results show that for load-activated parcels, a larger load-
elated effect size was strongly associated with better predictive power
or both in-scanner and out-of-scanner task performance, which was sta-
istically confirmed using linear trend analyses ( Fig. 5 , Fig. S6) . Specif-
cally, parcel bins were rank ordered in terms of linearly increasing ef-
ect size (0–6 for load-activated bins) and were then used as indepen-
ent variables to explain the observed mean of predictive accuracies (in-
canner measures: b = 0.047, permutation test: p < 0.001; out-of-scanner
easures: b = 0.025, permutation test: p < 0.001). Furthermore, at the
8 
argest effect size bins ( > 1.1), the predictive power tended to be greater
han that observed in univariate analyses (i.e., above 0.4 for in-scanner
nd 0.2 for out-of-scanner predictions). A qualitatively distinct pattern
as observed for load-deactivated parcels. There was no significant lin-

ar relationship observed for either in-scanner ( b = 0.02, permutation
est: p = 0.064) or out-of-scanner behavioral measures ( b = 0.003; per-
utation test: p = 0.33). Moreover, we found that for a matched level

f load-related effect size, load-activated parcels tended to have signif-
cantly higher power than load-deactivated parcels in predicting both
n- and out-of-scanner behavioral measures. Specifically, when predict-
ng both the in-scanner 2-back task performance and the out-of-scanner
ist-sorting task performance, parcels with matched load-related effect
izes between 0.5 and 0.9 (the maximum effect size for load-deactivated
arcels), significantly greater predictive power was obtained in the load-
ctivated bins relative to the load-deactivated bins (permutation test: all
 < 0.05). 

.6. Using load-effect size to guide feature selection 

The preceding analyses point to the utility of load-related effect size,
ultivariate analyses, and load-activated parcel sets when predicting

etween-subjects variation in WM performance. As a final analysis, we
irectly tested the hypothesis that load-related effect size can serve as an
ffective guide to select the most useful features (parcels) when building
redictive models. In particular, we tested models built in an iterative
anner, in which features were added to the model successively, ac-

ording to their ranked load-related effect size (i.e., starting from the
arcel with the largest effect size and continuing in descending order).
o examine the predictive gain of using load-related effect size as a fea-
ure selection guide, for each model, we compared performance to a
ull model, in which the same number of features (parcels) were se-
ected at random, using a permutation-based approach for statistical in-
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Fig. 6. The change in model predictive accuracies as adding in the next use- 
ful predictive feature. ( a) The model predictive accuracy when using different 
number of predictive features. The black line represents the observed predictive 
accuracy that uses load-related effect sizes to guide feature selection. The color 
of the data point represents whether the most recently added predictive feature 
is a load-activated or load-deactivated parcel. The gray ribbon represents the 
5% - 95% envelope of the predictive accuracy distribution if the same number 
of predictive features were randomly sampled. ( b) The predictive accuracies of 
models with vs. without feature selection. The bar plot shows the averaged pre- 
dictive accuracy from the 10-folds cross-validation framework. The horizontal 
dashed line in the bar plots indicate the highest univariate predictive accuracies. 
( c) Parcels that show the top 30 largest load effect size, with the yellow color 
highlighting the top 5 parcels ranked by load-effect size. 
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erence ( see Method: Using load-related effect size for feature selection ).
ig. 6 a shows that when predicting in-scanner working memory per-
ormance, the model accuracy plateaued at around r = 0.53 ( 𝑅 

2 = 28%
ariance explained) when the top 30 parcels ranked by load-effect size
ere included as predictive features. These top 30 parcels were almost

xclusively in fronto-parietal regions contained within the control and
orsal-attention networks (24 out of 30), re-emphasizing the importance
f these regions and networks in both within- and between- subjects
M effects ( Fig. 6 c) . Importantly, when using load-related effect size to

uide feature selection, the model performance was significantly higher
han the same number of parcels were selected at random. In particu-
ar, the performance of the load-related models consistently surpassed
he 95% cutoff of the null distribution at most feature levels. Both in-
canner as well as out-of-scanner predictive models were tested using
oth parcellation schemes in order to assess the generalizability of the
pproach ( Fig. S7) . 

Interestingly, however, when predicting out-of-scanner working
emory performance, the model accuracy reached its peak at around
hen only the top 5 parcels, ranked by load-related effect size, were

ncluded as predictive features, with an asymptotic value of r = 0.27
 𝑅 

2 = 7.3% variance explained; Fig. 6 a) . It is worth noting that al-
hough this value is lower than the in-scanner models, it is also con-
istent in demonstrating the advantage of using load-related effect size.
9 
his is shown by the 95% cutoff of the null distribution never sur-
assing the observed model performance with up to 5 features. More
mportantly, the asymptotic level of model performance when predict-
ng both in- and out-of-scanner performance was consistently achieved
hen utilizing only the top load-related effect size parcels as predictive

eatures. Indeed, when all available predictive features were used, the
redictive accuracy was lower, particularly for out-of-scanner predic-
ion ( Fig. 6 b ), which confirms the importance of the utility of selec-
ive features, and conversely, the potential vulnerability to over-fitting
hen using more expansive models. Lastly, this analysis also confirms

he value of multivariate relative to univariate models as the multivari-
te predictive power was greater than even the top univariate predictive
arcel ( Fig. 6 b ). 

. Discussion 

The goal of the current study was to test the utility of whole-brain
arcellation as a dimension reduction approach from which to system-
tically investigate the relationship of within-subject (load-related) to
etween-subjects (individual differences) WM variation. This examina-
ion yielded a number of important findings. First, parcel-based anal-
ses appear to be an effective form of dimension reduction, in that
hey yielded high WM load-related effect sizes while also retaining
lear specificity to well-established brain regions and networks (fronto-
arietal control and dorsal attention). Second, a tight coupling was ob-
erved between the strength of within- and between-subject effects,
articularly for regions showing a load-activated pattern (high load
 low load activation), with large load-related effect sizes predicting
tronger brain-behavior relationships. Third, the strength of neural load
ffects provided an excellent guide to the power of parcels in predicting
etween-subjects WM performance variation, though this pattern was
uch stronger when comparing load-activated with load-deactivated

low load > high load) parcels. Fourth, we validated that this property of
oad-activated parcels can be effectively leveraged as a heuristic guide
o feature selection, to build more powerful predictive models of both
n-scanner and out-of-scanner WM performance. We elaborate on each
f these findings and their implications below. 

.1. Toward using predefined parcellation scheme for dimension reduction 

Previous analyses have highlighted the problems of having
mall sample sizes for neuroimaging research ( Button et al., 2013 ;
esmond and Glover, 2002 ; Nee, 2019 ; Szucs and Ioannidis, 2020 ;
urner et al., 2019 ) For example, Poldrack et al. (2017) pointed out that
t the median sample size of fMRI studies (at around the year 2016), a
elatively large effect size of Cohen’s d = 0.75 is required to have ad-
quate statistical detection power (i.e., > 80%), but yet that the typical
oxel/vertex-level effect sizes for the N-back WM task, as measured with
he HCP data, was under d = 0.5. In the current study, we first replicated
he finding reported in Poldrack et al. (2017) , and found that the mean
ertex-level effect size for the most engaged network (i.e., FPN control
etwork) was barely above d = 0.5, with only ∼30% vertices surpassing
he cutoff of d = 0.75. Next, we performed the same effect size analyses
t the level of parcels rather than voxels/vertices. This change yielded
 qualitative difference from the pattern of results reported above, and
ith that reported in Poldrack et al. (2017) . Specifically, when con-
ucting the same analyses at the parcel level, we found that over half
f the parcels within the frontoparietal control network showed large
ffect sizes (and ∼70% of the parcels in this network had effect sizes
reater than 0.75). This finding suggests that even with the typical sam-
le sizes used in standard small-scale, single-lab fMRI studies of WM
N ∼ 30), parcel-based analyses should be adequately powered to reli-
bly identify load effects. Conversely, we found that in brain networks
ot typically associated with WM load effects (Visual, Limbic), none of
he parcels achieved these large effect sizes. This pattern indicates that
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Table 3 

Identities of the top 30 Schaefer parcels ranked by load-effect size. 

Parcel Name Schaefer ID Load-related effect size Univariate predictive accuracy for 2-back performance 

RH_Cont_Par_4 335 1.7471310 0.3798165 
RH_Cont_Par_5 336 1.7260637 0.3330955 
RH_Cont_Par_2 333 1.6731918 0.2973375 
RH_Cont_PFCl_15 355 1.6190681 0.4071900 
RH_DorsAttn_Post_15 285 1.6166858 0.4406975 
LH_DorsAttn_FEF_2 87 1.5648624 0.3713035 
LH_Cont_Par_5 131 1.5524267 0.2917752 
LH_Cont_Par_6 132 1.5036550 0.3509635 
RH_Cont_PFCl_14 354 1.4859233 0.3557810 
RH_Cont_Par_6 337 1.4522372 0.3440561 
RH_Cont_PFCl_11 351 1.4291677 0.3358864 
LH_Cont_pCun_2 145 1.3933306 0.3979757 
LH_DorsAttn_Post_9 77 1.3506103 0.3644828 
LH_Cont_Par_4 130 1.3391584 0.3259865 
RH_Cont_Par_1 332 1.3305392 0.2061880 
LH_Cont_PFCmp_1 148 1.3057180 0.3323264 
RH_DorsAttn_FEF_2 291 1.3020473 0.3780573 
RH_Cont_PFCmp_2 361 1.2908008 0.3191705 
RH_DorsAttn_Post_8 278 1.2880328 0.3397741 
RH_DorsAttn_Post_11 281 1.2612610 0.2912718 
RH_Cont_pCun_2 357 1.2375181 0.3851888 
LH_DorsAttn_FEF_4 89 1.2152265 0.3120591 
LH_Cont_Par_3 129 1.2085595 0.1586080 
LH_Default_PFC_20 185 1.1742447 0.2978756 
RH_SalVentAttn_FrOperIns_5 306 1.1611603 0.2683741 
LH_Default_pCunPCC_2 191 − 1.1601999 0.2161758 
RH_SalVentAttn_TempOccPar_7 300 1.1586735 0.1943499 
RH_Cont_PFCl_5 345 1.1579546 0.2279562 
LH_Default_PFC_24 189 1.1576329 0.3743460 
LH_Default_pCunPCC_10 199 1.1422137 0.2523239 
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arcel-based analyses are highly effective in strongly increasing sensi-
ivity while retaining specificity. Thus, the current results point to the
tility of parcel-based analyses as a powerful dimension reduction ap-
roach for neuroimaging studies. 

Parcel-based analyses also fare well when compared to other dimen-
ion reduction approaches that have been frequently adopted in the neu-
oimaging literature. In particular, component analyses (e.g., PCA, ICA)
re a preferred data-driven approach to dimension reduction, as they
an be used to extract the latent sources from all brain voxels (or ver-
ices) simultaneously, reducing the feature counts from a hundred thou-
and to typically less than a hundred (and often on the order of a dozen
r two), while still capturing most of the variance in the original dataset.
he loadings from these extracted components are then used to examine
he relationship between neural activity and behavioral performance,
apping the anatomical location of each latent source ( Egli et al., 2018 ;

ripada et al., 2020 ). Although component-based approaches are pow-
rful for reducing dimensionality and building predictive models, they
lso have significant limitations. In particular, component maps require
ignificant effort to generate, and are difficult to report and commu-
icate in a compact and replicable manner. In contrast, with prede-
ned parcellation schemes, identified neural substrates from one study
an be easily communicated (by parcel ID) to other researchers, and
s such can easily be utilized by these researchers in follow-up analy-
es or new studies (e.g., Tables 3 , S2 ). Moreover, along with previous
iterature, it has been suggested that analyses with predefined parcella-
ion schemes output meaningful results, not only for predictive model-
ng, but also for applications involving univariate analysis, multivariate
nalyses ( Etzel et al., 2020 ) or connectivity analyses ( Cole et al., 2016 ,
021 ). Indeed, the approach we utilized here could easily be adopted
ith other domains examined in the HCP, such as language, emotion,
nd reward processing, to verify the expected gain in effect size and util-
ty for task-related analyses of interest. As such, we strongly advocate
or the wider adoption of predefined parcellation schemes as the dimen-
ion reduction approach of choice for task-related neuroimaging data
nalyses. 
10 
Nevertheless, it is important to note that the use of predefined parcel-
ation schemes in task fMRI analyses is still nascent, and as such there are
any potential complexities that have not been adequately investigated.

irst, it is important to acknowledge that individual differences in whole
rain network architectures have been observed ( Mueller et al., 2013 ;
eitzman et al., 2019 ). Thus, a predefined parcellation scheme might be
ore applicable to group-averaged data analyses with big sample size

like the current study) compared to clinical oriented case studies, which
ay be benefit more from individual-specific parcellation techniques

e.g., Gordon et al., 2017 ; Wang et al., 2015 ). Second, many parcella-
ion schemes are defined from whole-brain resting-state functional con-
ectivity profiles, yet it is still not well understood the degree to which
rain network structure might change across resting and task states. For
xample, the default mode network (DMN) defined by the Schaefer par-
ellation includes a few highly load-activated parcels from the lateral
refrontal cortex ( Table 3 ), which are usually excluded from the con-
entional DMN when studying working memory (e.g., Čeko et al. 2015 ).
ecent work has suggested that these parcels might actually function as
ridges connecting the DMN with other large scale networks, such as
he frontoparietal network ( Gordon et al., 2020 ). Further investigation
s required to understand the exact role of these parcels during WM task
erformance. Third, the publication of new parcellation schemes has
reatly proliferated in recent years, with various approaches and con-
traints incorporated into the parcel generation algorithm. As such, a
lear “gold standard ” has yet to emerge regarding which parcellation
cheme to use, or even of the granularity of parcellation (e.g., 100, 400
r 1000 parcel schemes within Schaefer). In fact, it seems likely that
he types of brain data one works with (e.g., resting vs. task state data)
nd the type of analyses one performs (e.g., network analyses vs. multi-
ariate pattern analyses) may have an important impact on which par-
ellation scheme is most appropriate or effective. Even the issue of how
valuate various parcellation schemes in terms of benchmarks or metrics
s one that is only just now finding its way into the literature ( Dadi et al.,
020 ; Zhi et al., 2021 ). Therefore, for the current study, we replicated all
nalyses with two separate parcellations (Gordon, Schafer). The results
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ere strongly consistent, which provides strong reassurance regarding
he generality of our conclusions. Nevertheless, to provide even more
enerality, additional parcellation schemes would need to be tested, al-
eit with highly diminishing returns. As such, more work is needed to
rovide researchers with the tools and information to enable selection of
he most appropriate parcellation scheme for a particular neuroimaging
nalysis. 

.2. Tight coupling between within-subject and between-subject WM effects 

In the cognitive neuroscience of WM, an important yet unanswered
uestion is: to what degree do the brain regions that support WM (i.e.,
hose showing large neural load effects) overlap with brain regions that
re most sensitive to individual differences in WM (i.e., regions show-
ng strong neural-behavioral correlations; Yarkoni and Braver, 2010 )?
ne possibility is that the neural mechanisms used for WM maintenance
nd manipulation are distinct from those that translate these processes
nto successful behavioral actions ( Egli et al., 2018 ; Gray et al., 2003 ;
saka et al., 2003 ; Postle et al., 2001 ). Kane (2003) used a car metaphor

o illustrate the potentially dissociable relationship between WM load
ffects and individual variation in WM performance. In this metaphor,
ost cars use a similar basic braking mechanism (involving pads, drums,
aster cylinders, etc.) and the components of this mechanism can be

dentified by analyzing cars stopping (vs. accelerating; within-subject
M load effects), but variation in stopping distance (between-subjects
M variation) might arise from wholly different mechanisms (aerody-

amics, tire balance, weight, pedal placement, etc.), which is only re-
ealed by analyzing different cars that vary on these mechanisms. Yet an
lternative, and highly plausible, possibility is that variation in the func-
ioning or efficacy of the brain network utilized for WM maintenance
nd manipulation is also the primary source of individual variation in
M task performance ( Gray et al., 2003 ; Lee et al., 2006 ). The primary

oal of the current study was to directly compare brain regions iden-
ified by these two experimental approaches, in a systematic way, by
everaging the large sample-size of the HCP data set to conduct analyses
n a rigorous and well-powered manner. 

Our results clearly favor the overlapping neural mechanisms ac-
ount of WM function. In particular, we observed three key findings
hat support this interpretation. First, the brain regions showing signifi-
ant within- and between-subjects WM effects showed a close anatomic
verlap, targeting frontoparietal and dorsal attention networks. Second,
hen directly comparing the magnitude of both types of effects, a tight

oupling was observed, in that parcels exhibiting the highest within-
ubject effect sizes also tended to show the strongest correlations with
ehavioral performance (i.e., high between-subject effect sizes). Finally,
here was no easily observable spatial gradient or pattern in the parcels
hat exhibited stronger within- or between-subject effects. This finding
ounters the idea that there is clear dissociation in WM neural mecha-
isms with prefrontal showing stronger load-related effects and parietal
howing stronger sensitivity to individual variation (c.f., Egli et al. 2018 ;
arkoni and Braver 2010 ). Nevertheless, we did observe subtle biases in
ome brain networks related to greater sensitivity to one type of varia-
ion. Specifically, as a load-activated network with large load-related
ffect sizes, parcels in the dorsal-attention network tended to show
reater sensitivity to individual differences relative to the magnitude of
oad-related effect size. Conversely, in the somatomotor network, which
ostly contained parcels exhibiting a load-deactivated pattern, there
as relative insensitivity to individual differences. These results are con-

istent with our overall finding that load-deactivated regions were less
redictive of individual differences in WM task performance relative to
oad-activated regions, as discussed further below. 

It is important to consider potential reasons why our results might
ppear discrepant from prior work emphasizing dissociations in within-
s. between-subjects WM effects. One factor relates to sample size.
pecifically, having sufficient power to detect between-subjects WM
ffects requires a much larger sample than is necessary for detecting
11 
ithin-subject effects ( Braver et al., 2010 ; Yarkoni and Braver, 2010 ).
s discussed above, it is only more recently that fMRI studies have pro-
ided sample sizes necessary for conducting a comprehensive analysis
f between-subjects WM variation. Thus, most of the prior published
ork on this topic either had exceedingly low power for replication
 Bunge, 2001 ; Todd and Marois, 2005 ), or instead focused on isolated
 priori regions of interest (e.g., Osaka et al. 2003 ). By taking advan-
age of the large sample size of the HCP and a whole-brain parcellation
cheme, the current study provides a powerful approach by which to
esolve prior discrepancies in the literature. It is also the case that the
iscrepancy might be more apparent than real. Indeed, in a supplemen-
ary analysis, we used the intraclass correlation coefficient (ICC) as an
ndependent metric of between-subject variation. As expected, the ICC
as highly negatively correlated with load-effect size, strongly confirm-

ng the tradeoff between these two types of effects ( Fig. S9a ). Never-
heless, ICC proved to be a much weaker predictive indicator of brain-
ehavior relationships than load-effect size ( Fig. S9b ), supporting the
eneral conclusions of our primary analyses. 

Nevertheless, the current findings are subject to two important lim-
tations. First, due to the nature of the N-back task design in HCP, we
ere only able to measure the load-effect and individual differences for
-back performance (relative to 0-back). Working memory tasks with
igher working memory load demands would provide the ability to de-
ect load-related effects and their relationship to WM task performance
n a richer and more nuanced manner. For example, in recent work,
amichhane et al. (2020) used an N-back design that involved 6 para-
etric levels of WM load. The analyses utilized several different met-

ics to describe load-related effects and relate these to individual dif-
erences in WM performance. These analyses identified a single region
n left dorsolateral PFC, for which load-related effects predicted WM
erformance; though again the sample size in that study was too small
N ∼50) to conduct a comprehensive whole-brain analysis of between-
ubjects WM effects. An ideal design would be one that examined the
elationship within- and between-subjects WM variation using a para-
etric WM load manipulation, rather than with a single high-load level.

uch experimental designs can be achieved using N-back tasks with mul-
iple parametric levels (e.g., Lamichhane et al., 2020 ) or other WM tasks
hat involve a wide range of load manipulations such as the Self Or-
ered memory task ( Van Snellenberg et al., 2015 ) and the Sternberg
tem Recognition task ( Rypma et al., 2002 ). Yet a second limitation to
onsider is that even with the sample-size of the HCP (N ∼ 1000), it is
ossible that this dataset is still too small to generate precise and gen-
ralizable estimates of predictive power. In particular, a recent study
as suggested that the brain-wide associations we observed here (i.e.,
he correlation between neural activity and WM performance) may still
e subject to strong effect size inflation and mis-estimation due to sam-
ling variability, that does not resolve until samples are at least twice
s large as the HCP dataset ( Marek et al., 2020 ). However, it is worth
oting that Marek et al. (2020) examined the brain-wide associations
sing resting state functional connectivity as the neural measure to pre-
ict individual differences in behavioral task performance. Some studies
ave suggested that neural measures derived from cognitively demand-
ng task states will have more robust and consistent predictive power to
apture individual differences in behavioral performance ( Sripada et al.,
020 ). 

.3. Magnitude and direction of load-related effect size indicates predictive 

ower 

A correlational approach (or simple linear regression) measures the
egree to which the neural activity of a parcel can be used to explain in-
ividual differences in behavioral performance. However, correlational
pproaches do not necessarily indicate whether such a parcel can be re-
iably used to predict out-of-sample data ( Yarkoni and Westfall, 2017 ).
onsequently, in addition to standard correlational analyses, we used
ross-validation approaches to directly explore how predictive power
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or between-subjects WM effects varied as a function of load-related ef-
ect size. To explore this issue more thoroughly, both univariate and
ultivariate approaches were used to measure predictive power. Simi-

ar to what has now been observed in many fMRI analyses, we found that
ultivariate models substantially outperformed univariate ones in pre-
icting both in- and out-of-scanner tasks ( Fig. 6 b, Fig. S7 ). Importantly,
owever, both approaches converged in suggesting that the predictive
ower of a parcel (or a set of parcels) increases as the load-related effect
ize increases. 

An additional key finding in these analyses was that the univariate
nd multivariate models both provided evidence load-activated parcels
ad reliably greater predictive power than load-deactivated parcels
 Fig. 5 ). Note that this difference in predictive power between load-
ctivated and load-deactivated parcels was not an artifact of controlling
the absolute value of) load-related effect size or the number of predic-
ive features (parcels). In fact, supplemental analyses revealed that the
eneral pattern still held even when comparing the predictive power of
ll load-deactivated regions to load-activated regions ( Fig. S8 ). We spec-
late that there are two possible reasons why load-deactivated parcels
ight exhibit less predictive power than load-activated. First, regions

hat typically exhibit a load deactivation pattern (e.g., the default mode
etwork) appear to be sensitive to more general and non-specific fac-
ors, such as mind-wondering, arousal, and fatigue, that may only pe-
ipherally or indirectly contribute to task performance. Second, while
oad-activated regions included parcels mostly from brain networks that
re well-established to support higher cognitive functions, such as WM
nd attention control (e.g., Control/Frontoparietal and Dorsal Atten-
ion networks), load-deactivated parcels were primarily associated with
erceptually-oriented regions, such as those that make up the Visual and
omatomotor networks. Together, the anatomic location and functional
roperties of load-deactivated parcels are consistent with the finding
hat these parcels were less predictive of task performances relative to
oad-activated ones. 

However, the current findings do diverge from
atterthwaite et al. (2013) , who reported results from a large sample
-back study indicating that load-activated and load-deactivated

egions have similar predictive power. Two key differences between
he current study and Satterthwaite et al. (2013) may account for this
iscrepancy. First, Satterthwaite et al. (2013) defined load-deactivated
egions of interest (ROI) only from the default mode network. In
ontrast, the current study found that load-deactivated regions could
lso be located in perceptually-relevant brain networks (Visual /
omatomotor). Second, Satterthwaite et al. (2013) defined ROIs based
n the weights of another cross-validated predictive model, leading
o ROIs of high predictive power. In the current study, parcels were
elected according to load effect size, rather than predictive power.
dditionally, we want to stress that load-deactivated parcels were
efined according to a contrast between two load conditions (2-back,
-back), rather than between 2-back and a fixation baseline. We believe
his contrast was appropriate, given our primary interest in identifying
rain regions whose activity was specifically modulated by WM load.
owever, based on this contrast, we did not differentiate regions show-

ng distinct deactivation profiles (i.e., baseline > 0-back > 2-back vs.
-back > 2-back > baseline). Although beyond the scope of the current
aper, identifying whether such dissociable patterns of deactivation are
resent, and whether they exhibit distinct profiles of predictive power
or cognitive task performance, would be an interesting question for
uture work. 

.4. Load effect being a good indicator for feature selection 

A primary goal of cognitive neuroscience research is to find effec-
ive neural markers that can reliably predict individual differences in
ehavior. A number of recent studies have attempted to build predic-
ive models from whole-brain task-related activity patterns in order to
redict WM performance ( Egli et al., 2018 ; Pornpattananangkul et al.,
12 
020 ) and general cognitive ability ( Sripada et al., 2020 ). However,
espite their success in predicting behavior, our results argue that in-
luding neural activity from the whole brain might be suboptimal. In-
tead, selectively choosing predictive features for the model may further
aximize its predictive accuracy ( Fig. 6 b) . Specifically, when including

ll 400 features (Schaefer parcellation scheme), the model predictive
ccuracy for the in-scanner (N-back) WM task was around r = 0.49,
hich is around the same accuracy level compared to previous mod-

ls ( Pornpattananangkul et al., 2020 ; Satterthwaite et al., 2013 ). How-
ver, our results show that the model achieved a better performance
hen only the top 30 features ranked based on load-effect size were
sed ( r = 0.53). The same pattern was observed when predicting out-of-
canner behavioral measures and using the other parcellation scheme
 Figure S7) . Together, these results suggest that predictive models for
M performance may benefit from feature selection approaches, par-

icularly when these are guided by a functionally relevant principle. 
More specifically, the current study results provide a clear indica-

ion that load-effect size can serve as a principled basis from which to
uide feature (i.e., parcel) selection. We conducted permutation-based
nalyses which compared feature selection based on WM load relative
o random selection of an equivalent number of features. These anal-
ses revealed that WM load-based feature selection can almost always
ead to the best model performance, given any predictive feature size
 Fig. 6 a ). Indeed, in supplementary analyses, we found that the load-
ased approach to feature selection fared very well when compared to
 standard machine-learning approach to feature selection (the forward
tepwise algorithm; Fig. S10 ) that is designed to maximize predictive
ower, but in a ‘blind’ data-driven fashion (i.e., rather than according
o interpretable principles). Importantly, only the top 30 features ranked
y load-effect size were needed for the model to achieve optimal perfor-
ance. When predicting out-of-scanner working memory performance,

t seems that a load-based feature selection principle had little contribu-
ion when more than 10 features were selected. However, the results did
how that with load-effect size as an indicator, a model could achieve
eak performance (better than when all 400 features were included)
hen only the top 5 load-related features were selected. Together, the

urrent study provides evidence that feature (parcel) selection is an im-
ortant step toward building the optimal predictive model for individ-
al differences in working memory function, and that load-effect size is
 good indicator to guide the feature selection process in a principled
anner. 

.5. Constraints on generality 

As described above, there are a few limitations of the current study
hich provide important constraints regarding the conclusions that can
e drawn from it. In addition to the fact that the study involved only
 categorical (high / low) rather than parametric manipulation of WM
oad, and may still have had an insufficient sample size to yield robust
esults, it is important to consider the HCP sample, the use of the N-
ack task, the focus on activation rather than connectivity effects, and
he stimuli themselves as providing constraints on generality. We ad-
ress each of these points briefly. The HCP sample included only healthy
oung adults (22–35), and thus the results may not generalize well to
evelopmental, aging, or other populations suffering from clinical im-
airment. The N-back task is only one out of many potential experi-
ental paradigms used to probe WM function ( Wilhelm et al., 2013 ).

urther, although it is one of the most popularly used in neuroimag-
ng studies, the N-back task suffers from many well-known limitations
s a pure probe of both WM maintenance functions and also individ-
al differences ( Kane et al., 2007 ). Even within the N-back, the HCP
ask is relatively non-representative, as prior work has more frequently
ended to focus on verbal (letters, words) or spatial materials, rather
han the mostly non-verbal stimuli (e.g., places, faces) used in the HCP,
ith some clear anatomic distinctions observed across these stimulus

actors ( Owen et al., 2005 ). Thus, it is quite plausible that the pattern
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bserved here may not generalize to other N-back variants. Finally, al-
hough some recent studies have focused on the potential for task-based
ctivation patterns to be used as robust predictors of individual dif-
erences ( Etzel et al., 2020 ; Satterthwaite et al., 2013 ; Sripada et al.,
020 ) more attention has been given towards connectivity approaches,
oth resting-state and task-based, in this domain. As mentioned above,
t is not yet clear whether the critical factors that impact detection
f connectivity-based individual difference analyses ( Finn et al., 2015 ;
arek et al., 2020 ), generalize to analysis approaches, such as this one,

hat involve activation-based metrics. We add this section to remind re-
earchers that all these factors need to be kept in mind when drawing
mplications from the current work towards future studies ( Simons et al.,
017 ; Yarkoni, 2020 ). 

. Conclusion 

The current study jointly informs two distinct issues within cogni-
ive neuroscience: 1) the degree of overlap in the neural substrates of

M function related to within-subjects (e.g., load-related) and between-
ubjects (individual differences) effects; and 2) the neural indices that
how the greatest predictive power for detecting individual differences
n cognitive function. Our findings demonstrate that, at least within the
CP dataset and N-back task variants used in that study, neural load
ffects are tightly linked with individual variation in cognitive task per-
ormance, and as such, can be used as the basis for feature selection
o build predictive models of individual differences in WM function
as well as other indicators of general cognitive ability). In so doing,
he current work highlights the utility of large sample datasets, whole-
rain parcel-based approaches, and the use of informed feature selection
n neurally-based predictive modeling. As such, our findings provide a
trong foundation for future studies that can expand upon these efforts.
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